Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311812, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453675

RESUMEN

Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8 Mn0.1 O2 ) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm-2 , cut-off voltage: 4.4 V, and 20 µm Li foil).

2.
ACS Nano ; 18(3): 1969-1981, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206167

RESUMEN

The components and structures of the solid-electrolyte interphase (SEI) are critical for stable cycling of lithium metal batteries (LMBs). LiF has been widely studied as the dominant component of SEI, but Li2O, which has a much lower diffusion barrier for Li+, has rarely been investigated as the dominant component of SEI. The effect of Li2O-dominated SEI on electrochemical performance still remains elusive. Herein, an ultrastrong coordinated cosolvation diluent, 2,3-difluoroethoxybenzene (DFEB), is designed to modulate solvation structure and tailor Li2O-dominated SEI for stable LMBs. In the DFEB-based LHCE (DFEB-LHCE), DFEB intensively participates in the first solvation shell and synergizes with FSI- to tailor an Li2O-dominated inorganic-rich SEI which is different from the LiF-dominated SEI formed in conventional LHCE. Benefiting from this special SEI architecture, a high Coulombic efficiency (CE) of 99.58% in Li||Cu half cells, stable voltage profiles, and dense and uniform lithium deposition, as well as effective inhibition of Li dendrite formation in the symmetrical cell, are achieved. More importantly, the DFEB-LHCE can be matched with various cathodes such as LFP, NCM811, and S cathodes, and the Li||LFP full cell using DFEB-LHCE possesses 85% capacity retention after 650 stable cycles with 99.9% CE. Especially the 1.5 Ah practical lithium metal pouch cell achieves an excellent capacity retention of 89% after 250 cycles with a superb average CE of 99.93%. This work unravels the superiority of the Li2O-dominated SEI and the feasibility of tailoring SEI components through modulation of solvation structures.

3.
ChemSusChem ; 16(9): e202202156, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36715574

RESUMEN

All-solid-state lithium batteries (ASSBs) enabled by solid-state electrolytes (SEs) including oxide-based and sulfide-based electrolytes have gained worldwide attention because of their intrinsic safety and higher energy density over conventional lithium-ion batteries (LIBs). However, despite the high ionic conductivity of advanced SEs, ASSBs still exhibit high overall internal resistance, the most significant contributor of which can be ascribed to the cathode-SE interfaces. This review seeks to clarify the critical issues regarding the cathode-SE interfaces, including fundamental principles and corresponding solutions. First, major issues concerning electro-chemo-mechanical instability between cathodes and SEs and their formation mechanisms are discussed. Then, specific problems in oxides and sulfides and various solutions and strategies toward interfacial modifications are highlighted. Efforts toward the characterization and analysis of cathode-SE interfaces with advanced techniques are also summarized. Finally, perspectives are offered on several problems demanding urgent solutions and the future development of SE applications and ASSBs.

4.
Food Res Int ; 161: 111832, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192964

RESUMEN

The use of petroleum-based food packaging materials is causing environmental damage and increasing greenhouse gas production. Consequently, there is a great interest in developing smart and sustainable alternative materials. In this study, an agricultural waste product (purple corncob extract, PCCE) was used as a raw material to prepare environmentally friendly pH-sensitive packaging materials. Natural pH-sensitive pigments (anthocyanins) and lignin-containing cellulose nanocrystals (LCNC) were extracted from the purple corncobs. A cationic biopolymer (chitosan) was used as a scaffolding material to assemble the film matrix. Composite film (LCNC-PCCE-chitosan) was produced using a simple solvent casting method. Fourier transform infrared spectroscopy and scanning electron microscopy analyses showed that the PCCE and LCNC were well dispersed within the chitosan matrix and they interacted with the matrix through hydrogen bonding and electrostatic interactions. The addition of LCNC improved the hydrophobicity and mechanical properties of the film and imparted antioxidant activity and UV-blocking properties. The presence of anthocyanins in the PCCE endowed the film with a sensitive and reversible pH response, which could be well used to monitor changes in the freshness of pork and shrimp products.


Asunto(s)
Quitosano , Gases de Efecto Invernadero , Petróleo , Antocianinas/química , Antioxidantes/química , Celulosa/química , Quitosano/química , Concentración de Iones de Hidrógeno , Lignina , Carne , Extractos Vegetales/química , Solventes , Residuos , Zea mays
5.
Nano Lett ; 20(4): 2724-2732, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32149520

RESUMEN

Three-dimensional (3D) lithiophilic host is one of the most effective ways to regulate the Li dendrites and volume change in working Li metal anode. The state-of-the-art 3D lithiophilic hosts are facing one main challenge in that the lithiophilic layer would melt or fall off in high-temperature environment when using the thermal infusion method. Herein, a 3D porous CuZn alloy host containing anchored lithiophilic Zn sites is employed to prestore Li using the thermal infusion strategy, and a 3D composite Li is thus fabricated. Benefiting from the lithiophilic Zn sites with a strong adsorption capacity with Li, which is based on the analyses of the nucleation overpotential, binding energy calculation, and the operando optical observation of Li plating/stripping behaviors, facile uniform Li nucleation and dendrite-free Li deposition could be achieved in the interior of the 3D porous CuZn alloy host and the 3D composite Li shows remarkable enhancement in electrochemical performance.

6.
Materials (Basel) ; 13(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012825

RESUMEN

Zr-based bulk metallic glasses have been attracting tremendous interest of researchers because of their unique combination of mechanical and chemical properties. However, their application is limited as large-scale production is difficult due to the limitation of cooling rate. Recently, additive manufacturing technology has been proposed as a new solution for fabricating bulk metallic glasses without size limitation. In this study, selective laser melting technology was used to prepare Zr60Fe10Cu20Al10 bulk metallic glass. The laser parameters for fabricating full dense amorphous specimens were investigated. The mechanical and corrosion resistance properties of the prepared samples were measured by micro-compression and electrochemical corrosion testing, respectively. Lastly, Zr60Fe10Cu20Al10 bulk metallic glass (BMG) with dispersed nano-crystals was made, and good deformation ability was revealed during micro-compression test. The corrosion resistance decreased a bit due to the crystalline phases. The results provide a promising route for manufacturing large and complex bulk metallic glasses with better mechanical property and acceptable corrosion resistance.

7.
Materials (Basel) ; 11(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404205

RESUMEN

The integrity and reliability of surface protective coatings deposited on metal surface could be in-situ monitored via the attractive luminescence sensing technique. In this paper, we report the influence of substrate temperature on the properties of erbium (Er) doped aluminum nitride (AlN) film, which could be applied as a luminescent layer for monitoring the health of multilayered Al/AlN coating. The AlN:Er films were deposited via reactive radio-frequency magnetron sputtering, and the silicon substrate temperature was varied from non-intentional heating up to 400 °C. The composition, morphology, crystalline structure, and dielectric function of the AlN:Er films deposited under these different substrate temperature conditions were studied. These properties of the AlN:Er films show strong correlation with the substrate temperature maintained during film fabrication. The obtained AlN:Er films, without further annealing, exhibited photoluminescence peaks of the Er3+ ions in the visible wavelength range and the strongest photoluminescence intensity was observed for the AlN:Er film deposited with the temperature of substrate kept at 300 °C. The results demonstrated in this work offer guidance to optimize the substrate temperature for the deposition of AlN:Er film for future application of this sensing technique to thin metal components.

8.
Org Biomol Chem ; 16(41): 7702-7710, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30288521

RESUMEN

A highly enantioselective fluorination of indanone-2-carboxylates catalyzed by a polystyrene-supported diphenylamine-linked bis(oxazoline) (PS-box)-Cu(OTf)2 complex has been developed in a continuous flow system. The supported complex exhibited extremely efficient catalytic performance with high activity, affording the corresponding products in excellent yields (up to 99% yield) with excellent enantioselectivities (up to 99% ee) and more than 4000 turnover number (TON).

9.
Org Biomol Chem ; 15(19): 4191-4198, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28443921

RESUMEN

A highly enantioselective conjugate addition of 2-substituted benzofuran-3(2H)-ones to α,ß-unsaturated ketones promoted by chiral copper complexes has been developed, affording the Michael addition products with quaternary stereocenters in good to high yields (up to 95% yield) with excellent enantioselectivities (up to 99% ee). The chiral Michael adducts could be readily converted to the polycyclic benzofuran-type framework via the Robinson annulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...